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NEAR ISOMETRIES IN THE CLASS OF
L'-PREDUALS'

BY

Y. BENYAMINI

ABSTRACT
We construct preduals of {, which are nearly isometric without being isometric.
We also show that if X is nearly isometric to a C(K) space with K first
countable, then they are in fact isometric.

1. Introduction

For a pair X,Y of Banach spaces. define their distance coefficient by
d(X,Y)=inf{|T||IT""|} where the infimum is taken over all isomorphisms T
from X onto Y. The spaces X and Y are called nearly isometricif d(X,Y) = 1.
Examples of nearly-isometric but non-isometric spaces are well known (proba-
bly the first example of this type was constructed in an unpublished paper by A.
Pelczynski in 1960).

This paper investigates the possibility of the occurence of such a phenome-
non in the class of L'-preduals, and was motivated by the uniqueness problem
of the Gurari space(s). Gurari [4] has constructed an L'-predual with special
extension properties (see also [5], [9] for other constructions and the impor-
tance of this space in the general theory of L'-preduals). It was noted by Gurari
that this space is unique up to near-isometry, but it is still an open question
whether it is unique up to isometry,

A theorem of Amir [1] and Cambern [2] states that if d(C(K),C(H))<?2
then K is homeomorphic to H and thus C(K) is isometric to C(H). It might
have been thought that the L'-preduals behave in a manner similar to their
prototype, the C(K) spaces. This is however false and Section 2 is devoted to a
construction of nearly-isometric non-isometric preduals of /,. We also show
that a similar construction can be made in various classes of L'-preduals.

* This is part of the author’s Ph.D. thesis which was prepared at the Hebrew University of

Jerusalem under the supervision of Professor J. Lindenstrauss whom I wish to thank for his
interest and advice.
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In Section 3, we give a positive result and show thatif d(X,Y)=1and X isa
C(K) space {or more generally, a C,(K) space), and if also K is first countable
then X is actually isometric to Y.

In Section 4 we examine briefly the other classical spaces, the L’ (i) spaces.
We consider only the separable case and show that in this case there is a
constant K, such that d(L"(w),L?(v)) < K, implies that L”(u) is isometric to
L’ (v). Let us recall in this connection that it is known (cf. [6]) that if X = L”(u)
for some 1 =p < and some measure w (or if X*=L'(w)) and if Y is such
that d(X,Y) =1 then Y = L?(v) for some measure v and the same p (respec-
tively, Y*= L'(v)).

For a Banach space X we denote by By its closed unit ball. If K is a convex
subset of X we denote by E(K) the set of extreme points of K. Foraset K ina
dual space X* we denote its w*-closure by K. We shall deal with real Banach
spaces only. The results are also valid in the complex case although some
modifications are needed in Section 3.

2.

For every 0 < a <1 let X, be the space of all convergent sequences y = (y,)
of reals such that lim y, = ay, equipped with the sup norm. It is easy to see that
X* is isometric to [, and that

EBx)={ze,:n=12,} U {*ae}

where ¢, is the evaluation functional e.(y) = y.

For a countable subset A ={a;} of (0,1) let X.x = (EDX,, ). Again X% is
isometric to /,, and if we identify X, in the natural way as a subspace of X% we
get that E(Bx;)= U E(Bxz) U{0}.

ProrositioN. Let A ={a;} and B ={b:} be two different countable dense
subsets of (0,1). Then d(X., Xs) =1, but X, is not isometric to Xa.

Proor. For 0<a =b <1 define T: X, = X, by

a
— n=1
(Ty). = v
Yn n>1,.

Then T is an isomorphism onto with ||T||||T™'|| = b/a and thus d(X,, X,) = b/a.
Since X. and X do not depend on the order of the a;’s and b;’s, we can

assume, using the density of A and B that given any € >0, we have
(1+ €)' < bi/a; <1+e¢€ for every i. By the previous remark this implies that
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d(X.,X,,) =1+ € for every i and thus also d(Xa4, Xs) =1+ €. Since this is true
for every € >0 we get that X, is nearly isometric to Xp.

Assume now that there is an isometry T from X, onto Xg. Then T* is a
w*-continuous isometry of X% onto X%, and in particular maps E(Bx})
isometrically onto E(Bx;). But by the remarks in the beginning of this section
we obtain that

{Ix |: x € E(Bxp)}=BU{0}U{1}
{Ix:x € E(Bx)}= A U{o}u{l}
and since A # B these sets are different, a contradiction.

ReMARK. It is interesting to check in what classes of L'-preduals [7] one
could construct examples of this type. The spaces X, constructed above are M
spaces. A similar example can be constructed in the class of A(K) spaces as
well: For 0<a <1 let Y, be the space of all convergent sequences y = (y.)
such that limy, = ay, + (1 — a)y,. For a countable subset A ={a;} of (5, 1) let
Y.=CE@Y.), The space Y, can be identified cannonically as a subspace of
C(K) where K is the set of ordinals | = £ = w? (with the usual order topology):
We identify Y, with

{fECK): f(w?) =0 and Limf(w-i+n)=a;f(w-i+l)
+(1—a)f(w-i+2)}.

We put Z, = sp{Ya, 1} where 1 is the function which is identically 1 on K. Then
Z* is isometric to [, and its unit ball has an extreme point, and thus it is an
A(K) space (see [S]). Again one can show that if A and B are dense in (3, 1)
then d(Za, Zs) =1 but they are not isometric unless A = B.

3.

Since d(X,,c)=a' it is clear that there is no constant A >1 so that
d(C(K),X)=x and X* = L'(u) will already ensure that C(K) is isometric to
X, like in the Amir-Cambern theorem. The following theorem is, however, true
(see [7] for the definition of C,(K) spaces):

THeoreM 1. Ifd(X,Y)=1and Y is a C,(K) space with K first countable,
then X is isometric to Y.

We need first some notation and simple lemmas.

We identify C*(K) with the space of all measures on K which are
anti-symmetric with respect to o. We denote by ¢. the element of C,(K)*
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defined by @ (f) = f(k) = — f(ak). 1t is well known that if X = C,(K), then
E(Bx+) ={¢« : k EK, ¢.# 0} and that if E(Bx-) is not closed then E(By.)=
E(Bx-)U{0}.

From now on we assume that K is first countable.

LeEmMMA 1. Lete >0 andlet ¢ = [v.du(s) be a w*-representation in C*(K),
where ¢ # 0 and p is a probability measure on {v € C¥(K):|lv||= 1+ €}. Then
there exists a Baire set E which is a subset of

{villv—oul| =26 |[v]| =1 + e}, withu(E)= 1/3.

Proor. Choose {f.} in C,(K) such that ||f,||=1=f.(k) and such that f,
converge pointwise to xu;— X« Define

E.={viv(f)zl-¢/2|v|=1+e} Ezméu QE

Clearly E is a Baire subset of {v:|lv — @[ = 2¢, ||v]| =1 + €} and it suffices to
show that for all n, u(E,)= 1/3. Indeed,

I=f(k)= [ (f f..(t)dv‘(t))d;u(s)ép.(E,,)(l +e)+u(K\E)(1-€/2)
=1+e(u(E,) - :u(K\E.)
which implies that w(E,)= 1/3.

LemMma 2. Let € >0 and let T be an isomorphism from C,(K) onto X such
that |[f| =||Tfl = (1 + €)||f|- Then for every k € K such that ¢, # 0 there exists an
x*(k) € E(Bx-) with |[x*(k)— T* ¢, || = 2.

Proor. By the Choquet representation theorem (8], there exists a probabil-
ity measure i on Bx. which vanishes on every Baire set disjoint from E (Bx~)
such that T*'g = fg,.x*du(x*) and thus ¢, = fg,. T*x*du(x*). Since
[T*x*|=1+ e we can apply Lemma 1. The set E is a Baire set with w(E) = 1/3
and thus contains an extreme point x*(k). Clearly |x*(k)— T* '¢i|| = 2e.

The preceding lemma was true for general X, but in the special case where
X*=L'(w) more can be said. In this case the distance between any two
extreme points in Bk~ is 2, and thus we obtain that x *(k) is uniquely determined
provided e < 1/2. We shall denote by ¢ the map k — x *(k) and call it the map
induced by T.

As was remarked earlier if X = C,(H) then the only accumulation point of
E (Bx.) is (possibly) the origin. This implies easily that in this case the induced
map ¢ is w*-continuous.
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CoroLLARY. Let T:C,(K)—> C.(H) be an isomorphism onto such that
ITINT "I = 1 + € with € < 1/3. Then there exists an isometry W : C,(K)— C.(H)
such that [T — W[ =2e(l+e¢).

Proor. Let ¢ be the map induced by T and ¢, the map induced by T™'. By
applying T* to the inequality || T* ' — (k)| = 2e we get that | T*¢ (k) — o] =
2e(1+ €) < 1. By the uniqueness of the extreme point which is closer than 1 to
T*y(k) we get that ¢ = ¢, (¢ (k)). Thus ¢, which is w*-continuous by the
previous remark is a homeomorphism of E(Bc:«») onto E (Bc:as) Which satisfies
Y(z*) = —¢(z*) and thus induces an isometry W of C,(K) onto C.(H) by
defining for f&€ C,(K), Wf(h)=4¢ "(@.)(f). Clearly W* ', = (k) and
|W - T||=2e(1 +¢€).

The preceding corollary is a weak generalization of the Amir-Cambern
theorem to C,(K) spaces. We would like to point out however (without going
into detail) that by using the techniques of Cambern [2] one can get the full
generalization and show that d(C,(K), C,(H))<2 implies that C,(K) is
isometric to C.(H).

LemMa 3. Let X* = L'(w) and let T|, T, be isomorphisms of C.(K) onto X
such that |T|||T'WTAT>'I<1+€ which € <1/6. Then there exists an
isometry W of C,(K) onto itself such that T, and T,W induce the same map .

Proor. Denote by  the map induced by T.. The operator
T3'T,: C.{K)— C,(K) satisfies the conditions of the corollary and thus
induces an isometry W of C,(K) onto itself such that |W* ', —
(T2'T)* '¢u|| = 2¢ for every k € K. Thus

(W)Yo — (K| = [T 'WH oo — TE(T' T)* "o
HITH o — (k)| = |ITE 'Re +2e < 1.

By the uniqueness of the extreme point closer than 1 to (T-W)* '¢, we get
that ¢ is indeed the map induced by T>W.

ProOF oF THEOREM 1. By [6], X* is an L'(w) space. Let T, : C,(K)—=X
be a sequence of isomorphisms such that | TJ|||T.'| = 1+ 107" and let ¢ be the
map induced by T,. By Lemma 3 one can find other isomorphisms S, such that
[S. IS =1+ 107" and such that they all induce the same map ¢. Thus for
every x € X we have that

[(ST'=S)xtk) | =[(S¥'=S:Dea(x)| =210 +107™) | x |
and the operators S.' form a Cauchy sequence, in the operator norm. Clearly
the limit of the sequence {S'}:-: is an isometry from X onto C,(K).
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In this section we examine the stability of the L?(x) spaces under small
isomorphism. The case p =1 follows by duality from the Amir-Cambern
theorem.

THeorReM 2. If d(L'(n), L'(v)) <2 then L'(u) is isometric to L'(v).

Proor. By passing to the dual we also get that d(L'(n)*, L'(v)*) <2, but
every L” space is isometric to a C(K) space and thus, by the theorem of
Amir-Cambern, L™(u) is isometric to L*(v). By a theorem of Grothendieck [3]
this implies that L'(x) is isometric to L'(v).

For p > 1 we shall deal with the separable case only. As is well known, every
separable L* space (p # 2). is isometric to one of the following: L(0,1), I,
(L°0,1D)PI1}),, 1 =n =N8,. As L*(0, 1) is not isomorphic to a subspace of I, we
get the complete answer by the following theorem.

THEOREM 3. For every p#2 there exists an € =e(p) such that if
d(L?(0,)BI;, L0, D)PIT)<1+ethenm =n.

Proor. The cases p == and p = | were already dealt with, and by duality
we can assume that 2>p>1. Assume that n>m and let
T:L°0,1)®I;—->L"0,1)D!5 be an isomorphism with [x||=|Tx{=
(1+ €)||x |- Denote by {e:}}-, the unit vectors in I; and by {f;}7-, the unit vectors
in [7}.

It is easy to check that for every i and for every g € L"(0,1)& 1, we have
that max|le; = g| =1 +|lig|P. Thus, by putting h = Tg we get

() max||Texh||*=1+e)?(1+] k| 7)forevery h € L?(0,1)PI7.

Fix now i and let Te; = ¢ + 2%, af; where ¢ € L"(0, ). We claim that if € is
small enough there exists k such that |a.|” > 1—2"72% Clearly if i, # i, then
ki # k, (provided € is small enough) which is impossible if m < n.

Assume that max|q;|” =1-2°7 In this case we could find a subset J of
{1,---,m} such that |Z;e,|a;]"— Zjes [g;[| = 1 — 2°7%. We can also find a subset A
of [0,1] such that [a|el" =fwialel’. Define now h=
2xa(t) — Do + Zicsaif; — Ziesaif. An easy computation shows that

max ||Te, h|f S227(|Telf +1-22)=2" (1 +€)’ +1-2"7)
and |h|=]|Telz1.
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Substituting this 7 in (1) we get that 2°"'(1+e)* +1-2>"H)=2(1+¢€)™*
which is a contradiction provided € is small enough. This proves Theorem 3.
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