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NEAR ISOMETRIES IN THE CLASS OF 
L '- PREDUALS* 

BY 

Y. BENYAMINI 

ABSTRACT 

We construct preduals of t, which are nearly isometric without being isometric. 
We also show that if X is nearly isometric to a C(K) space with K first 
countable, then they are in fact isometric. 

I. Introduction 

For a pair X, Y of Banach spaces,  define their distance coefficient by 

d(X, Y ) =  inf{llTH]]T-']l} where the infimum is taken over  all i somorphisms T 

f rom X onto Y. The spaces X and Y are called nearly isometric if d(X, Y)  = 1. 

Examples  of nearly-isometric  but non-isometric spaces are well known (proba- 

bly the first example of this type was 'const ructed  in an unpublished paper  by A. 

Pelczynski in 1960). 

This paper  investigates the possibility of the occurence of such a phenome-  

non in the class of L ' -preduals ,  and was motivated by the uniqueness problem 

of the Gurari  space(s). Gurari  [4] has constructed an L ' -predual  with special 

extension propert ies  (see also [5], [9] for  other construct ions and the impor- 

tance of this space in the general theory of L'-preduals) .  It was noted by Gurari  

that this space is unique up to near- isometry,  but it is still an open question 

whether  it is unique up to isometry,  

A theorem of Amir [I] and Cambern  [2] states that if d ( C ( K ) , C ( H ) ) < 2  

then K is homeomorphic  to H and thus C(K)  is isometric to C(H).  It might 

have been thought that the L ' -preduals  behave in a manner  similar to their 

prototype,  the C(K)  spaces.  This is however  false and Section 2 is devoted to a 

construct ion of nearly-isometric  non-isometric preduals of l,. We also show 

that a similar construct ion can be made in various classes of L'-preduals .  

* This is part of the author's Ph.D. thesis which was prepared at the Hebrew University of 
Jerusalem under the supervision of Professor J. Lindenstrauss whom I wish to thank for his 
interest and advice. 
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In Sect ion 3, we give a posi t ive result  and show that if d(X, Y) = 1 and X is a 

C(K) space  (or more  general ly,  a C,,(K) space),  and if also K is first countab le  

then X is actual ly  isometr ic  to  Y. 

In Sect ion 4 we examine  briefly the o ther  classical  spaces ,  the L" (/x) spaces.  

We  cons ider  only  the separable  case  and show that  in this case  there is a 

cons tan t  K,  such that  d(L"(~),L~(u))< K, implies that  L"(/~) is isometr ic  to 

L"(u). Let  us recall in this connec t ion  that  it is known  (cf. [6]) that  if X = L" (/x) 

fo r  some  1 _-<p < ~  and some m e a s u r e / ~  (or if X *  = L'(/~)) and if Y is such 

that  d(X, Y) = 1 then Y = L"(u) for  some measure  v and the same p (respec-  

t ively,  Y* = L'(v)). 
For  a Banach  space  X we deno te  by Bx its c losed unit  ball. If K is a convex  

subset  of  X we denote  by E(K) the set of  ex t reme points  of  K. For  a set K in a 

dual space  X *  we denote  its to *-closure b y / ( .  We shall deal with real Banach  

spaces  only.  The  results  are also valid in the complex  case a l though some 

modif icat ions are needed  in Sect ion 3. 

, 

For  eve ry  0 < a < 1 let X,  be the space  of  all conve rgen t  sequences  y = (y.)  

of  reals such that  l imy ,  = ay, equipped with the sup norm.  It is easy  to see that  

X *  is i sometr ic  to l, and that  

E(Bx'.)={+-en : n  = 1,2,.-.} U {+_ae,} 

where  e, is the evalua t ion  funct ional  e , (y )  = yn. 

For  a countab le  subset  A = {al} of  (0, I) let XA = (E(~)X,,)co. Again X *  is 

i sometr ic  to l~, and if we  ident i fy  X~', in the  natural  w a y  as a subspace  o f  X*A we 

get  that  P(Bx~)  = O P(Bx~,) U {0}. 

PROPOSITION. Let A = {a,} and B = {b,} be two different countable dense 
subsets o[ (0, 1). Then d(XA, X~)= I, but XA is not isometric to Xa. 

PROOF. For  0 < a ~ b < l define T : Xo --> Xb by 

(Ty) ,  = , n = I 

( y n > l .  

Then  T is an i somorph i sm on to  with [LTIIIIT-'I[ = b/a and thus d(X~, Xb) -< b/a. 
Since XA and XB do not depend  on the order  of  the a~'s and b~'s, we can 

assume,  using the densi ty  of  A and B that given any E > 0 ,  we have 

(l + E) -~ < bi/ai < I + ~ for  every  i. By the prev ious  remark  this implies that  
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d (Xo,, Xh,) -< 1 + e for every  i and thus also d (XA, Xo) =< I + e. Since this is true 

for every E > 0 we get that XA is nearly isometric to XB. 

Assume now that there is an isometry T f rom Xa onto Xa. Then T* is a 

w*-continuous isometry of X *  onto X* ,  and in particular maps /~(Bx;) 

isometrically onto ff,(Bx~). But by the remarks  in the beginning of this section 

we obtain that 

{llx II:x P(B,,;)}= BU{0}U{1} 

{llx II:x ~ ff'(Bx;)} =A U {0} U {1} 

and since A ~ B these sets are different, a contradiction. 

REMARK. It is interesting to check in what classes of L ' -preduals  [7] one 

could construct  examples  of this type. The spaces XA constructed above  are M 

spaces.  A similar example  can be constructed in the class of A (K)  spaces as 

well: For 0 <  a < 1 let Y, be the space of all convergent  sequences y = (y,)  

such that lim y. = ay, + (1 - a)y2. For a countable subset  A = {a~ } of (% I) let 

Ya =(Y(~Ya,)co. The space YA can be identified cannonically as a subspace of 

C ( K )  where K is the set of ordinals ! _-< ~: =< w 2 (with the usual order topology): 

We identify YA with 

{ rE  C(K) : f (oJ  2)=0 and !im f (w • i + n) = al f (w  • i + !) 

+ (I - a ,)f(w • i + 2)}. 

We put Za = sp{ YA, I} where 1 is the function which is identically I on K. Then 

Z*  is isometric to l, and its unit ball has an ex t reme point, and thus it is an 

A ( K )  space (see [5]). Again one can show that if A and B are dense in (~, !) 

then d(Za, ZB) = 1 but they are not isometric unless A = B. 

. 

Since d(X, ,c )<=a -' it is clear that there is no constant  A > !  so that 

d ( C ( K ) , X )  =< A and X* = L'(tz) will already ensure that C ( K )  is isometric to 

X, like in the Amir-Cambern  theorem. The following theorem is, however ,  true 

(see [7] for the definition of C,,(K) spaces):  

THEOREM 1. lf d(X, Y)  = I and Y is a C~(K) space with K first countable, 

then X is isometric to Y. 

We need first some notation and simple lemmas.  

We identify C*(K)  with the space of all measures  on K which are 

ant i -symmetr ic  with respect  to ~r. We denote by ~0~ the element  of C~(K)* 
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defined by ¢ k ( f ) = f ( k )  = - f ( ( r k ) .  It is well known that if X = C~(K), then 

E(B×.) = {¢k : k E K, ~ ~ 0} and that if E(B×.) is not closed then ff~(Bx.) = 

E (Bx . )  U {0}. 

From now on we assume that K is first countable. 

LEMMA 1. Let • > 0 and let ~ = fv ,  d# (s) be a o)*-representation in C* (K) ,  

where ¢k ~ 0 and I~ is a probability measure on { v ~ C * (  K ) : llvll <-- 1 + •} .  Then 

there exists a Baire set E which is a subset o f  

(v :llv - ~11--< 2•, I1~11-<- I + •}, with ~ ( E )  > 1/3. 

PROOF. Choose {f,} in C,,(K) such that ]lf, ll = 1 = f . ( k )  and such that f, 

converge pointwise to Xlkr-Xl~kr. Define 

E°--{~z~¢fo)->l-•/2,l l~ll_-<l+,}; E =  N U E°. 
m = l  n = r a  

Clearly E is a Baire subset of {v :11~ - ,p~ll---- 2•, Ilvl[ <= 1 + •} and it suffices to 

show that for  all n, ~ ( E , ) _ -  > I/3. Indeed, 

, = = f(f 
= I + • ( t z ( E . ) - ' I z ( K \ E . ) )  

which implies t h a t / x ( E . )  => 1/3. 

LEMMa 2. Let • > 0 and let T be an isomorphism from C~(K)  onto X such 

that Ilfll--< I1Tfll ~ (1 + •)llfll. Then for  every k e K such that ~k # 0 there exists an 

x* (k  ) ~ E (Bx . )  with IIx*(k)- T*-',P~II--< 2•. 

PROOF. By the Choquet representation theorem [8], there exists a probabil- 

ity measure t~ on Bx. which vanishes on every Baire set disjoint f rom E(B×.) 

such that T*-'~k = f s x . x * d t z ( x * )  and thus ~,k =fs× . T*x*d t~ (x* ) .  Since 

IIT*x*ll <-- 1 + • we can apply Lemma 1. The set E is a Baire set with Iz(E) = I/3 

and thus contains an extreme point x*(k) .  Clearly I Ix*(k)-T*- ' ,P~II - -<2• .  

The preceding lemma was true for general X, but in the special case where 

X* = L'(/~) more can be said. In this case the distance between any two 

extreme points in B×. is 2, and thus we obtain that x*(k)  is uniquely determined 

provided • < i/2. We shall denote by ~ the map k --->x*(k) and call it the map 

induced by T. 

As was remarked earlier if X = C~(H) then the only accumulation point of 

E ( B x . )  is (possibly) the origin. This implies easily that in this case the induced 

map ~b is oJ*-continuous. 
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COROLLARY. Let T:C~(K)--+C,(H) be an isomorphism onto such that 

][TI[ IIT-'[]--< ! + E with e < I/3. Then there exists an isometry W : C~(K)---~ C,(H) 
such that l I T -  wlI--<2~(I +~) .  

PROOF. Let  to be the map induced by T and tO, the map induced by T- ' .  By 

applying T* to the inequality I IT*- '~  - tO(k)ll--< 2~ we get that l iT*tO(k)-  ,P~II =< 
2E(I + e) < I. By the uniqueness of the extreme point which is closer than 1 to 

T'tO(k) we get that q~k = tO,(tO(k)). Thus tO, which is to *-continuous by the 

previous remark is a homeomorphism of/~(Bc-tK~) onto ft.(Be'am)which satisfies 

tO(z*) = - tO(z*)  and thus induces an isometry W of C~(K) onto C,(H) by 

defining for f E  C,(K),  Wf(h) = tO-'(q~h)(f). Clearly W*-'~k = tO(k) and 

rlW- Yll--< 2~(1 + ~). 
The preceding corollary is a weak generalization of the Amir-Cambern 

theorem to C~(K) spaces. We would like to point out however  (without going 

into detail) that by using the techniques of Cambern [2] one can get the full 

generalization and show that d(C~(K), C , ( H ) ) < 2  implies that C,,(K) is 

isometric to C.(H). 

LEMMA 3. Let X* = L'(tx) and let T~, T2 be isomorphisms of  C,.(K) onto X 

such that IIT, IIIITT'llllr,-IIIIT~-'ll<l+• which • < I/6. Then there exists an 
isometry W of C,(K)  onto itself such that T~ and 7"2 W induce the same map q,. 

PROOF. Denote by tO the map induced by T,. The operator  

T~_'T~:C=(K)--+C.(K) satisfies the conditions of the corollary and thus 

induces an isometry W of C,(K) onto itself such that I IW*- '¢k-  

(T_~'T,)*-'~#~II-< 2E for every  k E K. Thus 

II(T_-W)* ' ~  - tO(k)ll--< I1~-'  W* '~ - 7~..-'(TZ'T,)* '~11 

+ l l ~ - ' ~  - to(k)il--<H~ 'll2e +2e  < 1. 

By the uniqueness of the extreme point closer than 1 to (T,W)*-'~p~ we get 

that tO is indeed the map induced by T2W. 

PROOF OF THEOREM 1. By [6], X* is an L'(p.) space. Let T, : C,,(K)-+X 

be a sequence of isomorphisms such that IIT, IIIIT-,'II ~ I + I0-" and let tO be the 

map induced by T,. By Lemma 3 one can find other isomorphisms S, such that 

IIS.llllSTIl_-< ! + 10 -° and such that they all induce the same map tO. Thus for 

every x E X we have that 

I(S;'-S2)xtk)l - - I ( S * - 1 - S * - I ) ~ k ( x )  I =< 2(10-" ÷ 10-")II x II 

and the operators S ; '  form a Cauchy sequence, in the operator  norm. Clearly 

the limit of the sequence {S,'}~=, is an isometry from X onto C~(K). 
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4. 

In this section we examine the stability of the L~(Ix) spaces under small 

isomorphism. The case p = l follows by duality from the Amir-Cambern 

theorem. 

THEOREM 2. I f  d ( L ' ( l z ) , L ' ( v ) ) <  2 then L'(tz) is isometric to L '(v) .  

PROOF. By passing to the dual we also get that d (L ' ( t x )* ,L t ( v )* )<2 ,  but 

every L ~ space is isometric to a C ( K )  space and thus, by the theorem of 

Amir-Cambern, L®(~) is isometric to L~(v). By a theorem of Grothendieck [3] 

this implies that L~(p.) is isometric to L'(v) .  

For p > l we shall deal with the separable case only. As is well known, every 

separable L p space (p#2 ) .  is isometric to one of the following: LP(0, 1), I,, 
n (L p (0, I) O lp )o, 1 _-< n _- ah. As L ° (0, l) is not isomorphic to a subspace of lp we 

get the complete answer by the following theorem. 

THEOREM 3. For every p # 2  there exists an E = ~ ( p )  such that if 

d(LP(0,1)@/~,, LP(0, ! ) @ / 7 )  < 1 + e  then m = n. 

PROOF. The cases p = ~ and p = I were already dealt with, and by duality 

we can assume that 2 > p > l .  Assume that n > m  and let 

T : L P ( O , I ) O I ~ - - ~ L " ( O , I ) @ I " ~  be an isomorphism with IIxll<=lITxll<-_ 
(l + ~)llx II. Denote by {e,}7=, the unit vectors in l~, and by {fJ}7~J the unit vectors 

m in lo. 
It is easy to check that for every i and for every g E LP(0, 1)@/7, we have 

that maxlle,---gll ~ = 1 +llgll ~. Thus, by putting h = Tg we get 

(1) max II Te, ~ h II" ~ (1 + ~)-"(1 + II h II ")  fo r  e v e r y  h ~ LP(O,1)@I'~. 

----- + Fix now i and let Tel ~ Xi~ ai[i w h e r e ,  • L"(0, I). We claim that if ~ is 

small enough there exists k such that l a k [ ~ > l - 2  p-2. Clearly if i, # i2 then 

k, # k2 (provided E is small enough) which is impossible if m < n. 

Assume that max[ailP=<l - 2  "-2. In this case we could find a subset J of 

{1, . . . ,  m} such that Ixj~la~l o -  X~,,, la~l"l ~ I - 2 "-2. w e  can also find a subset A 

of [0, I] such that fA I~ I p = fto.,J',a I~0 1~- Define now h = 

(2xA(t)-  I)~0 + Xj~jai~ -Xi~ai~.  An easy computation shows that 

max IITe, ~htl  ~ ~ 2"-~(llTe, II ~ + I -  2"--2)< 2~-'((1 +E)" + 1 - 2  ~-2) 

and Ilhll=llTe, H~ I. 
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Substituting this h in (1) we  get that 2 ~ - ' ( ( t + e ) P + t - 2 P - 2 ) - > 2 ( I + E )  -p 

which is a contradiction provided • is small enough.  This proves  Theorem 3. 
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